Clin. Lab. 2022;68:1-5 ©Copyright

ORIGINAL ARTICLE

Application of Interphase Fluorescent in Situ Hybridization: a Screening Tool for the Diagnosis of Microdeletion Syndrome

Kyong Ok Im^{1, 2}, Soon Ok Kim³, Jung Sun Lee³, Soo Hee Park⁴, Sung-Min Kim⁵, Hee Sue Park⁶, Suhng Wook Kim^{2,7}, Jung-Ah Kim⁶, Dong Soon Lee^{5,6}

¹ Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea

School of Health and Environmental Science, College of Health Science, Korea University, Seoul, Republic of Korea

Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea Dow Biomedica, Inc., Seoul, Republic of Korea

⁵ Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea ⁶ Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea

BK21 FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea

SUMMARY

Background: Most laboratories adopt the results of metaphase fluorescent in situ hybridization (FISH) for the diagnosis of microdeletion syndromes. To investigate the discrepancy between the results of interphase and metaphase, we compared the quantitative results of FISH for 5 kinds of microdeletion syndrome and gender determination disorders (SDD).

Methods: A total of 282 (135 for DiGeorge syndrome, 20 for Kalmann syndrome, 7 for Miller-Dieker syndrome, 38 for Prader Willi/Angelman syndrome, 62 for Williams syndrome, and 20 for SDD (SRY FISH)) were enrolled. For SRY FISH, we artificially mixed fresh blood of male and female with various ratios and then compared the results of metaphase and interphase SRY FISH. Using a bio-cell chip, we performed interphase FISH in 168 patients with microdeletion syndromes and compared the results with manual interphase.

Results: The concordance rate between the results of metaphase and interphase was 100% in microdeletion syndrome. In the disorders of gender development, SRY FISH showed 100% concordance between interphase and metaphase when we counted 50 metaphase cells and 100 interphase cells. Comparison with mixtures of male and female blood at various ratios also showed 100% concordance. The results of bio-cell chip showed 100% concordance between previous interphase FISH results.

Conclusions: Considering the complete concordance between interphase and metaphase in microdeletion syndrome, the application of interphase FISH without performing metaphase FISH can be a screening test for microdeletion syndrome. Confirmation by metaphase FISH can be performed only in cases with abnormal results by interphase FISH.

(Clin. Lab. 2022;68:xx-xx. DOI: 10.7754/Clin.Lab.2021.210747)

Correspondence: Jung-Ah Kim, MD, PhD Department of Laboratory Medicine Seoul National University College of Medicine 101 Daehak-Ro, Jongno-Gu Seoul Republic of Korea +82 2-2072-3964 Phone: Fax: +82 2-747-0359 Email: jungah82@snu.ac.kr

Manuscript accepted August 8, 2021

Supplementary Tables and Figures

Table S1. Results of SRY probe with artificially mixed peripheral blood samples - Analyst 1 vs. Analyst 2.

			Vysis Probe XY/total counted cells		Cytocell Probe XY/total counted cells			
	Peripheral blood mixed ratio		Analyst 1	Analyst 2	p-value	Analyst 1	Analyst 2	p-value
1	M:F = 1:99	Interphase	2/200 (1%)	4/200 (2%)	0.6851	4/200 (2%)	2/200 (1%)	0.6851
1		Metaphase	1/50 (2%)	2/50 (4%)	1.0000	0/50 (0%)	1/50 (2%)	1.0000
2	M:F = 5:95	Interphase	9/200 (4.5%)	14/200 (7%)	0.3908	16/200 (8%)	13/200 (6.5%)	0.7004
4		Metaphase	4/50 (8%)	4/50 (8%)	1.0000	3/50 (10%)	3/50 (6%)	1.0000
3	M.E - 10.00	Interphase	21/200 (10.5%)	22/200 (11%)	0.2883	15/200 (7.5%)	23/177 (11.5%)	0.2323
3	M:F = 10:90	Metaphase	4/50 (8%)	5/50 (10%)	1.0000	3/50 (6%)	6/50 (12%)	0.4870
4	M:F = 15:85	Interphase	32/200 (16%)	26/200 (13%)	0.4779	29/200 (14.5%)	31/200 (15.5%)	0.8888
4		Metaphase	6/50 (12%)	9/50 (18%)	0.5766	5/50 (10%)	9/50 (18%)	0.3881
5	M:F = 20:80	Interphase	38/200 (19%)	40/200 (20%)	0.8996	39/200 (19.5%)	37/200 (18.5%)	0.8987
5		Metaphase	12/50 (24%)	11/50 (22%)	1.0000	9/50 (18%)	9/50 (18%)	1.0000
(M:F = 30:70	Interphase	71/200 (35.5%)	75/200 (37.5%)	0.7554	59/200 (29.5%)	53/200 (26.5%)	0.5778
6		Metaphase	20/50 (40%)	16/50 (32%)	0.5323	20/50 (40%)	15/50 (30%)	0.4019
7	M:F = 40:60	Interphase	94/200 (47%)	93/200 (46.5%)	1.0000	98/200 (49%)	89/200 (44.5%)	0.4228
		Metaphase	23/50 (46%)	22/50 (44%)	1.0000	23/50 (46%)	23/50 (46%)	1.0000
o	M:F = 50:50	Interphase	103/200 (51.5%)	98/200 (49%)	0.6892	101/200 (50.5%)	98/200 (49%)	0.8415
8		Metaphase	29/50 (58%)	26/50 (52%)	0.6879	27/50 (54%)	26/50 (52%)	1.0000
9	M:F = 60:40	Interphase	128/200 (64%)	126/200 (63%)	0.9173	124/200 (62%)	129/200 (64.5%)	0.6783
9		Metaphase	33/50 (66%)	30/50 (60%)	0.6790	32/50 (64%)	28/50 (56%)	0.5406
10	M:F = 70:30	Interphase	145/200 (72.5%)	155/200 (77.5%)	0.2987	135/200 (67.5%)	137/200 (68.5%)	0.9147
10		Metaphase	35/50 (70%)	39/50 (78%)	0.4945	36/50 (72%)	33/50 (66%)	0.6658
11	M:F = 80:20	Interphase	168/200 (84%)	167/200 (83.5%)	0.1277	165/200 (82.5%)	166/200 (83%)	1.0000
11		Metaphase	41/50 (82%)	43/50 (86%)	0.7858	42/50 (84%)	41/50 (82%)	1.0000
10	M:F = 85:15	Interphase	178/200 (89%)	175/200 (87.5%)	0.7565	181/200 (90.5%)	175/200 (87.5%)	0.4246
12		Metaphase	43/50 (86%)	46/50 (92%)	0.5246	45/50 (90%)	41/50 (82%)	0.3881
13	M:F = 90:10	Interphase	190/200 (95%)	188/200 (94%)	0.8270	184/200 (92%)	183/200 (91.5%)	1.0000
15		Metaphase	45/50 (90%)	46/50 (92%)	1.0000	46/50 (92%)	46/50 (92%)	1.0000
14	M:F = 95:5	Interphase	194/200 (97%)	195/200 (97.5%)	1.0000	185/200 (92.5%)	192/200 (96%)	0.1966
14		Metaphase	46/50 (92%)	48/50 (86%)	0.6777	46/50 (92%)	47/50 (94%)	1.0000
15	M:F = 99:1	Interphase	197/200 (98.5%)	196/200 (98%)	1.0000	198/200 (99%)	196/200 (98%)	0.6851
15		Metaphase	49/50 (98%)	49/50 (98%)	1.0000	50/50 (100%)	50/50 (100%)	1.0000

			Vysis Probe XY/total counted cells		Cytocell Probe XY/total counted cells			
	Peripheral blood mixed ratio		Interphase	Metaphase	p- value	Interphase	Metaphase	p-value
1	M:F = 1:99	Analyst 1	2/200 (1%)	1/50 (2%)	0.4895	4/200 (2%)	0/50 (0%)	0.5867
1		Analyst 2	4/200 (2%)	2/50 (4%)	0.3446	2/200 (1%)	1/50 (2%)	0.4895
2	M:F = 5:95	Analyst 1	9/200 (4.5%)	4/50 (8%)	0.2995	16/200 (8%)	3/50 (10%)	0.7728
2		Analyst 2	4/200 (7%)	4/50 (8%)	0.0533	13/200 (6.5%)	3/50 (6%)	1.000
2	M:F = 10:90	Analyst 1	21/200 (10.5%)	4/50 (8%)	0.7934	15/200 (7.5%)	3/50 (6%)	1.000
3		Analyst 2	22/200 (11%)	5/50 (10%)	1.000	23/177 (11.5%)	6/50 (12%)	1.000
4	M:F = 15:85	Analyst 1	32/200 (16%)	6/50 (12%)	0.6597	29/200 (14.5%)	5/50 (10%)	0.4950
4		Analyst 2	26/200 (13%)	9/50 (18%)	0.3663	31/200 (15.5%)	9/50 (18%)	0.6687
-	M:F = 20:80	Analyst 1	38/200 (19%)	12/50 (24%)	0.4332	39/200 (19.5%)	9/50 (18%)	1.000
5		Analyst 2	40/200 (20%)	11/50 (22%)	0.8445	37/200 (18.5%)	9/50 (18%)	1.000
	M:F = 30:70	Analyst 1	71/200 (35.5%)	20/50 (40%)	0.6226	59/200 (29.5%)	20/50 (40%)	0.1746
6		Analyst 2	75/200 (37.5%)	16/50 (32%)	0.5143	53/200 (26.5%)	15/50 (30%)	0.5993
-	M:F = 40:60	Analyst 1	94/200 (47%)	23/50 (46%)	1.000	98/200 (49%)	23/50 (46%)	0.7531
7		Analyst 2	93/200 (46.5%)	22/50 (44%)	0.8741	89/200 (44.5%)	23/50 (46%)	0.8747
0	M:F = 50:50	Analyst 1	103/200 (51.5%)	29/50 (58%)	0.4326	101/200 (50.5%)	27/50 (54%)	0.7521
8		Analyst 2	98/200 (49%)	26/50 (52%)	0.7531	98/200 (49%)	26/50 (52%)	0.7531
9	M:F = 60:40	Analyst 1	128/200 (64%)	33/50 (66%)	0.8696	124/200 (62%)	32/50 (64%)	0.8710
9		Analyst 2	126/200 (63%)	30/50 (60%)	0.7450	129/200 (64.5%)	28/50 (56%)	0.3264
10	M:F = 70:30	Analyst 1	145/200 (72.5%)	35/50 (70%)	0.0880	135/200 (67.5%)	36/50 (72%)	0.6120
10		Analyst 2	155/200 (77.5%)	39/50 (78%)	1.000	137/200 (68.5%)	33/50 (66%)	0.7371
- 11	M:F = 80:20	Analyst 1	168/200 (84%)	41/50 (82%)	1.000	165/200 (82.5%)	42/50 (84%)	1.000
11		Analyst 2	167/200 (83.5%)	43/50 (86%)	0.8299	166/200 (83%)	41/50 (82%)	0.8363
10	M:F = 85:15	Analyst 1	178/200 (89%)	43/50 (86%)	0.6211	181/200 (90.5%)	45/50 (90%)	1.000
12		Analyst 2	175/200 (87.5%)	46/50 (92%)	0.4659	175/200 (87.5%)	41/50 (82%)	0.3556
13	M:F = 90:10	Analyst 1	190/200 (95%)	45/50 (90%)	0.1893	184/200 (92%)	46/50 (92%)	1.000
13		Analyst 2	188/200 (94%)	46/50 (92%)	0.5340	183/200(91.5%)	46/50 (92%)	1.000
14	M:F = 95:5	Analyst 1	194/200 (97%)	46/50 (92%)	0.1165	185/200 (92.5%)	46/50 (92%)	1.000
14		Analyst 2	195/200 (97.5%)	48/50 (86%)	0.6297	192/200 (96%)	47/50 (94%)	0.4637
15	M:F = 99:1	Analyst 1	197/200 (98.5%)	49/50 (98%)	1.000	198/200 (99%)	50/50 (100%)	1.000
15		Analyst 2	196/200 (98%)	49/50 (98%)	1.000	196/200 (98%)	50/50 (100%)	0.5867

Table S2. Results of SRY probe with artificially mixed peripheral blood samples - Metaphase vs. Interphase.

Abbreviations: M - male, F - female.

	95% Power ^a			99% Power ^a			
Frequency (%) of second cell line ^b	Analytical sensitivity			Analytical sensitivity			
becond con mie	90%	95%	99%	90%	95%	99%	
≥ 50	11	7	5	18	12	8	
≥ 40	19	12	7	30	19	12	
≥ 30	39	20	11	61	33	18	
≥ 20	133	46	19	203	74	34	
≥10	ID	291	54	ID	447	92	
≥5	ID	ID	171	ID	ID	282	

Table S3. Approximate numbers of Metaphases or Interphases required to identify Mosaicisms or Chimerisms at 95% or 99% power by using probes with analytical sensitivities of 90%, 95%, or 99% [1].

^a Power in this context is the probability that the test rejects the null hypothesis, H_0 , when, in fact, H_0 is false. ^b Frequency = 1 - p_a. Abbreviations: ID - indistinguishable form background.

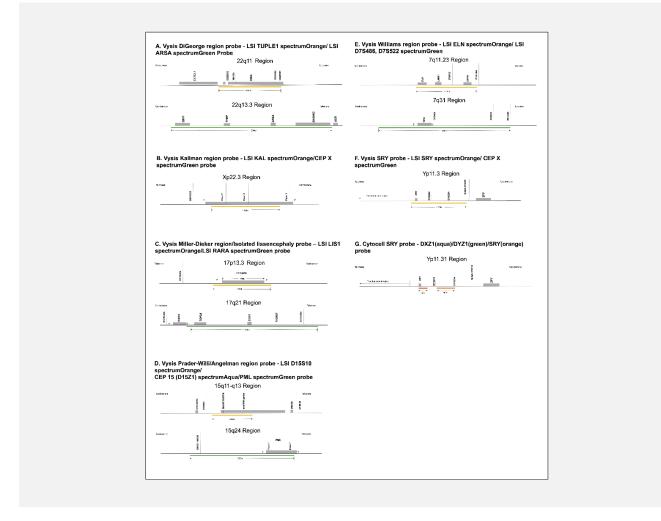


Figure S1. Probe size and map of each probe; (A) Vysis DiGeorge region probe - LSI TUPLE1 spectrumOrange/ LSI ARSA spectrumGreen Probe; (B) Vysis Kallman region probe - LSI KAL spectrumOrange/CEP X spectrumGreen probe; (C) Vysis Miller-Dieker region/Isolated lissencephaly probe - LSI LIS1 spectrumOrange/LSI RARA spectrumGreen probe; (D) Vysis Prader-Willi/Angelman region probe - LSI D15S10 spectrumOrange/CEP 15 (D15Z1) spectrumAqua/PML spectrumGreen probe; (E) Vysis Williams region probe - LSI ELN spectrumOrange/ LSI D7S486, D7S522 spectrumGreen; (F) Vysis SRY probe - LSI SRY spectrumOrange/ CEP X spectrumGreen; and (G) Cytocell SRY probe - DXZ1(aqua)/DYZ1(green)/ SRY(orange) probe.

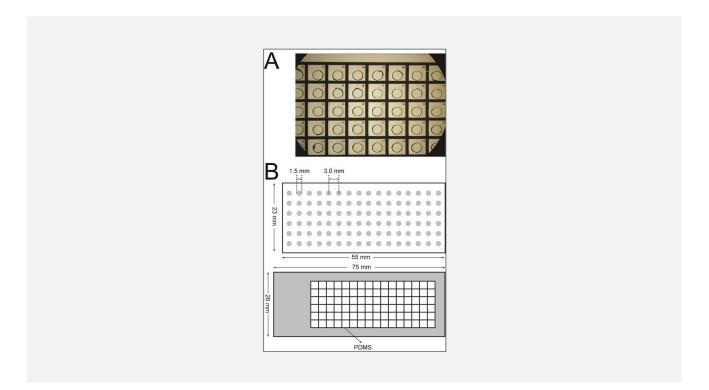


Figure S2. Fabricated bio-cell chip. (A) A perforated polydimethylsiloxane (PDMS) layer on the slide glass forms a total of 96 wells which are located within each lattice marked by an indexing number. (B) A blueprint of bio-cell chip [2].

References:

- 1. Dewald G, Stallard R, Saadi AA, et al. A multicenter investigation with interphase fluorescence in situ hybridization using X-and Y-chromosome probes. Am J Med Genet 1998;76(4):318-26. (PMID: 9545096)
- 2. Chun H, Lee DS, Kim HC. Bio-cell chip fabrication and applications. Methods Mol Biol 2009;509:145-58. (PMID: 19212720)