## **ORIGINAL ARTICLE**

# Challenges of *In Vitro* Glycation when Producing Blood Materials for Hemoglobin A<sub>1C</sub> Immunoassays

W. Duanginta <sup>1</sup>, N. Apiratmateekul <sup>1, 2</sup>, GJ. Kost <sup>3</sup>, NK. Tran <sup>3</sup>, K. Kongros <sup>1, 2</sup>, K. Shearman <sup>4</sup>, W. Treebuphachatsakul <sup>1, 2</sup>

 Reference Material and Medical Laboratory Innovation Research Unit, Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA
Anational Institute of Metrology (Thailand), Klong Luang, Pathumthani, Thailand

#### **SUMMARY**

*Background:* Blood materials are essential for quality control and assurance of hemoglobin  $A_{1C}$  (Hb $A_{1C}$ ) measurements. This study presents an optimal condition for *in vitro* glycation to prepare blood materials for Hb $A_{1C}$  with desired high Hb $A_{1C}$  content and commutable with two immunoassays.

Methods: Washed erythrocytes were adjusted to a hematocrit (Hct) of 50 - 55% and glycated in vitro at  $37^{\circ}$ C for up to 120 hours with various concentrations of D-glucose in phosphate buffer saline to prepare blood materials for HbA<sub>1C</sub>. After glycation in each condition, glycation of blood material was inhibited and HbA<sub>1C</sub> level was monitored. The HbA<sub>1c</sub> in blood materials from in vitro glycation was compared in terms of stability and commutability with blood materials from other preparation methods.

Results: Incubation of erythrocytes with 400 mM D-glucose for 15 hours at 37°C resulted in a significant increase (p < 0.001) of HbA<sub>1c</sub> in blood materials by at least 40% with a remaining Hct between 38% to 42%. Hemoglobin A<sub>1C</sub> in blood materials was stable at 3.8  $\pm$  0.8°C for 70 days and during transport for 3 days (temperature ranges from 8.1 to 23.5°C), after inhibition—by glucose concentration solution. Hemoglobin A<sub>1C</sub> values in blood materials from in vitro glycation were commutable between enzymatic and turbidimetric immunoassay.

Conclusions: An optimal condition for in vitro glycation by incubation of erythrocytes with 400 mM D-glucose for 15 hours at 37  $^{\circ}$ C was able to generate HbA<sub>1C</sub> material with intact erythrocytes that is sufficiently stable and commutable between enzymatic and turbidimetric immunoassay. Therefore, this condition is suitable for the preparation of blood material for HbA<sub>1C</sub> immunoassays.

1

(Clin. Lab. 2023;69:1-2. DOI: 10.7754/Clin.Lab.2022.220619)

### Correspondence:

Wanvisa Treebuphachatsakul, Ph.D. Department of Medical Technology Faculty of Allied Health Sciences Naresuan University Phitsanulok, 65000 Thailand

Phone: + 66 5596-6354 Fax: + 66 5596-6234, Email: wanvisab@nu.ac.th

Manuscript accepted August 3, 2022

Clin. Lab. 4/2023

# **Supplementary Data**

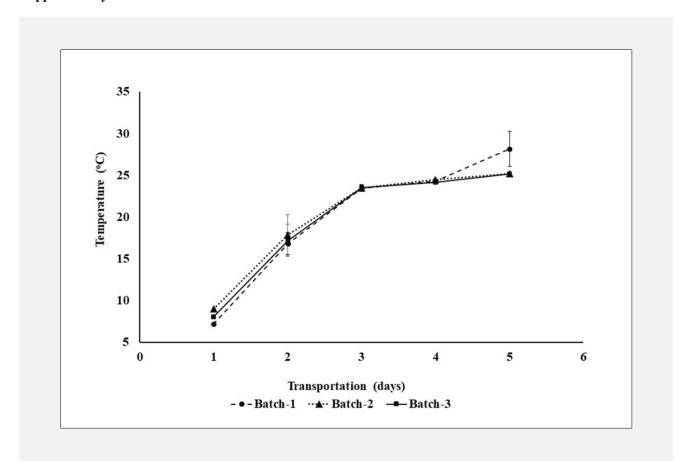



Figure S1. Temperature during three days of transportation.

2 Clin. Lab. 4/2023