CASE REPORT

The First Human Infection Case of Macacine Alphaherpesvirus 1 Virus in China

Yang Pan¹, Pan Xiang², Daitao Zhang¹, Wenling Wang³, Jun Han⁴, Wenjie Tan³, Peng Wang², Jingjing Li², Quanyi Wang¹, Jingyuan Liu²

¹ Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China

² National Medical Center for Infectious Diseases (Beijing) Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University,

Beijing, China

³ Key Laboratory of Biosafety, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China

⁴ Viral Center of National Pathogen Resource Center, China CDC, Beijing, China

SUMMARY

Background: Macacine alphaherpesvirus 1 (BV) was first reported in the 1930s and only about 60 cases have been diagnosed since then.

Methods: A 53-year-old male who worked as a veterinary surgeon, developed a fever with nausea and vomiting in April 2021 in Beijing, China. Real-time polymerase chain reaction (PCR) and metagenomics Next Generation Sequencing (mNGS) were used for diagnosis.

Results: BV DNA was confirmed by mNGS and PCR. The case died 51 days after onset, due to the damage to the brain and spinal cord caused by a viral infection and hypoxic-ischemic encephalopathy. The typical BV inclusion bodies in the brain were found for the first time.

Conclusions: Here we reported the first human infection case of BV in China. This fatal case highlights the potential threat of BV to occupational workers and the essential role of surveillance. (Clin. Lab. 2023;69:xx-xx. DOI: 10.7754/Clin.Lab.2023.221215)

Correspondence: Prof. Jingyuan Liu Prof. Quanyi Wang National Medical Center for Institute for Infectious Disease and Infectious Diseases (Beijing) Department of Endemic Disease Control Critical Care Medicine Beijing Center for Disease Prevention and Control Beijing Ditan Hospital No. 16 Hepingli Middle St. Capital Medical University Beijing No. 8 Jingshun East St. China Beijing +86 10-64407109 China Phone: +86 10-84322200 Fax: +86 10-64407109 Phone: Email: bjcdcxm@126.com E-mail: dtyyicu@ccmu.edu.cn

Case Report accepted January 27, 2023

Supplementary Data

METHODS

Sample processing and DNA extraction

Approximately 3 mL cerebrospinal fluid (CSF), 0.5 mL blister fluid, 5 mL blood, 3 mL nasal swab, and 3 mL oropharyngeal swab sample of the patient was collected on 14 days after onset. Total RNA/DNA was extracted from 200 μ L samples using an automated total nucleic acid extraction system according to the instructions (Tianlong, Xi'an, China).

Library preparation and metagenomic next-generation sequencing (mNGS)

The RNA/DNA was quantified using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). The RNA was reverse-transcribed, then amplified with DNA using ULSEN MicroSpectrum Kit (MicroFuture, Beijing, China). The sequencing libraries were prepared using the Illumina Nextera XT Library Prep Kit (Illumina, San Diego, CA, USA) and were conducted by Illumina sequencing.

Data analysis

Quality control was carried out after high-quality sequencing data were obtained. Then the reads consistent with the human reference genome sequence were screened and removed [1]. After removing the low complexity reads, the remaining data were compared with microbial databases using a commercial pipeline (MicroFuture). The number of reads that could match a certain pathogen was obtained, and the possible pathogens were judged. Then the reads that match with alphaherpesvirus were extracted and mapped to the reference genome NC 004812.1.

Confirmatory assay by real-time PCR

Both in-house assay and commercial kits were used to verify the BV infection. For the in-house assay, realtime PCR was performed using Premix Ex Taq master mix for TaqMan real-time PCR (Takara, Dalian, China), according to the manufacturer's instructions. The following PCR conditions were used: denaturation at 95°C for 10 minutes, 95°C for 15 seconds, and 60°C for 60 seconds for 40 cycles. Twelve sets of primer-probe targeting BV, Monkeypox, pan-Orthopoxvirus, VZV (Varicella-Zoster Virus, Human Herpes Virus 3), EBV (Epstein-Barr Virus, Human Herpes Virus 4), CMV (Cytomegalovirus, Human Herpes Virus 5), HHV-6a/b, HHV-7, and HHV-8 were applied according to previous reports (supplementary table 1). For commercial assays, herpes simplex virus 1 (HSV-1, HHV-1), HSV-2 (HHV-2), VZV, EBV, CMV, and HHV-6 were tested according to the manufacturers' instructions (Mabsky, Shenzhen, China and Altona Diagnostics, Hamburg, Germany).

Virus isolation

Vero and HEp-2 cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% calf bovine serum. The virus was propagated at 37°C as described previously [2].

References:

- Wilson MR, O'Donovan BD, Gelfand JM, et al. Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing. JAMA Neurol 2018;75(8):947-955. (PMID: 29710329)
- Eberle R, Hilliard JK. Replication of simian herpesvirus SA8 and identification of viral polypeptides in infected cells. J Virol 1984; 50(2):316-24. (PMID: 6708170)

Table S1.	Oligonucleotic	le primers and	l probes for	qPCR.
-----------	----------------	----------------	--------------	-------

Refer- ence	-TAMRA [1]		MGBNFQ [2]	ACT- [2]	ACT- [2] ACT- [2] IGBNFQ [3]	MGBNFQ [2] ACT- [2] IGBNFQ [3] GBNFQ [3]	MGBNFQ [2] ACT- [2] IGBNFQ [3] BNFQ [3] BNFQ [3]	MGBNFQ [2] ACT- [2] GBNFQ [3] BNFQ [3] BNFQ [3] CACGT- [4] AGATG- [5]	MGBNFQ [2] ACT- [2] GBNFQ [3] BNFQ [3] BNFQ [3] CACGT- [4] AGATG- [5] AGATG- [5] TCTAAC [5]	MGBNFQ [2] ACT- [2] GBNFQ [3] BNFQ [3] BNFQ [3] CACGT- [4] AGATG- [5] AGATG- [5] TCTAAC [5]	MGBNFQ [2] ACT- [2] GBNFQ [3] GBNFQ [3] BNFQ [3] BNFQ [3] CACGT- [4] AGATG- [5] AGATG- [5] CTAA- [5] CTAA- [5]	MGBNFQ [2] ACT- [2] ACT- [2] GBNFQ [3] BNFQ [3] BNFQ [3] CACGT- [4] AGATG- [5] AGATG- [5] CTAA- [5] CTAA- [5]
Probe (5' to 3')	FAM-CCGCCCTCTCCCGAGCACGTG-	FAM-CATCAGAATCTGTAGGCCGT-N		FAM-TATAACGGCGAAGAATATA MGBNFQ	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGTATAAGGAG-M	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGTATAAGGAG-MC FAM-CAGGCTACCAGTTCAA-MGI	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGTATAAGGAG-MC FAM-CAGGCTACCAGTTCAA-MGF FAM-TGTCTTCACGGAGGCCAAAC FAM-TGTCTTCACGGAGGCCAAAC	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGTATAAGGAG-MC FAM-AGTGCTTGGTATAAGGAG-MG FAM-TGTCTTGGCGGAGGCAAAAC TAMRA GCTCTCAGCCTACGGGGGGCAAAC FAM- GCTCTCAGCCTACAGGGCACCCA TAMRA	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGTATAAGGAG-MG FAM-AGTGCTTGGTATAAGGAG-MG FAM-CAGGCTACCAGTTCAA-MGF FAM-TGTCTTTCACGGGGGGGGAAAC TAMRA GCTCTCAGGCTACAAGAGGCCACCA TAMRA GCTCTCAGCCTACAAGAGCACCCA TAMRA GCTCTCAGCCTACAAGAGCACCCA TAMRA CTAMRA	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGTATAAGGAG-MG FAM-AGTGCTTGGGTATAAGGAG-MG FAM-CAGGCTACCAGTTCAA-MGF FAM-TGTCTTTCACGGGGGGGAAAC TAMRA GCTCTCAGCCTACGGGGGGCAAAC TAMRA AAGGACATCTCGCTGTACGGTCGAA C-TAMRA TCTGCGCCCAACCTTCTAATGACGG TAMRA	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGGTATAAGGAG-MG FAM-CAGGCTACCAGTTCAA-MGF FAM-TGTCTTCACGGAGGCAAAC TAMRA GCTCTCAGGCTACCGGAGGCAAAC AAGGACATCTCACGGAGGCACCCA TAMRA AAGGACATCTCGCTGTACCGTCAAT CTGCGCCCAACCTTCTAATGACG TAMRA TCTGCGCCCAACCTTCTAATGACG TAMRA TCTGCGCCCAACCTTCTAATGACG TAMRA	FAM-TATAACGGCGAAGAATATA MGBNFQ FAM-AGTGCTTGGTATAAGGAG-MG FAM-AGTGCTTGGGTATAAGGAG-MG FAM-CAGGCTACCAGTTCAA-MGF TAM-TGTCTTTCACGGAGGGCAAAC TAMRA GCTCTCAGGCTACCGGGGGGAAAC TAMRA AGGACATCTCGCGTGTACCGTCAAT AGGACATCTCGCGTGTACCGTCAAT CTGCGCCCAACCTTCTAATGACG TAMRA TCTGCGCCCAACCTTCTAATGACG TAMRA TCTGCGCCCAACCTTCTAATGACG TAMRA TCTGCGCCCAACCTTCTAATGACG TAMRA TCTGCGCCCAACCTTCTAATGACG TAMRA TCTGCGCCCAACCTTTTAACAACGCCA GG-TAMRA
CG FAM-CCGCCCTCT		3GT FAM-CATCAGAAT		GTCT FAM-TATAACC	GTCT FAM-TATAACC N ACGTC FAM-AGTGCTTG	GTCT FAM-TATAACC N CGTC FAM-AGTGCTTG FAM-AGTGCTTG FAM-CAGGCTA	GTCT FAM-TATAACC CGTC FAM-AGTGCTTG TGAG FAM-CAGGCTA 3AG FAM-TGTCTTC	GTCT FAM-TATAACC GGTC FAM-AGTGCTTG NGAG FAM-CAGGCTA 3AG FAM-TGTCTTTC 6GT GCTCTGGCTA	GTCT FAM-TATAACC GGTC FAM-AGTGCTTG NGAG FAM-AGTGCTTG GGT FAM-CAGGCTA GGT GCTCTCGCTA GGT GCTCTCGCCTA	GTCT FAM-TATAAGG GGTC FAM-AGTGCTTG N GGG FAM-AGTGCTTG FAM-TGTGTTG GGT GCTCTGGCTA GGT GCTCTGGGCTA AAT AAGGACATCTGG CACG TCTGCGCCTA	GTCT FAM-TATAAGG GGTC FAM-AGTGCTTG N GGG FAM-AGTGCTTG AG FAM-TGTCTTG GGT GCTCTGGCTA AAT GCTCTCAGCCTA C C C C C C C C C C C C C C C C C C	GTCT FAM-TATAAGC GGTC FAM-AGTGCTTG N GGT FAM-AGTGCTTG FAM-CAGGCTA AGG FAM-TGTCTTTC AAT GCTCTCAGCCTA CTCCCGCCAAC C CACG TCTGCGCCCAAC C CACG TCTGCGCCCAAC C CACG TCTGCGCCCAAC C CACG TCTGCGCCCAAC
regeaetaece		CTCCTCGTTGGT	ATTTTTGTAGTCT		AATACAAGACGTC	AATACAAGACGTC GAAGCGTATGAG	AATACAAGACGTC GAAGCGTATGAG	AATACAAGACGTC GAAGCGTATGAG ACCGTTCTCGAG GACGGCCAGGT	AATACAAGACGTC GAAGCGTATGAG ACCGTTCTCGAG GACGGCCAGGT ATGACGGCCAGT	AATACAAGACGTC GAAGCGTATGAG CCGTTCTCGAG GACGGCCAGGT ATGACGGCCAGGT	AATACAAGACGTC GGAAGCGTATGAG CGAAGCGTATGAG ACCGTTCTCGAG ACCGTTCTCGAG GACGGCCAGGT ATGACGGCCAGT ATGACGGCCAAT ATGACGGCCAAT GTGCTATTAACACG	AATACAAGACGTC GAAGCGTATGAG GACGCTTCTCGAG GACGGCCAGGT ATGACGGCCAGGT ATGCTATTAACACG GTGCTATTAACACA
TGGTACGTGTC		GACGATACTCC		CGCTATCGAACCA	CGCTATCGAACCA GGTATCGAACCA	CGCTATCGAACCA 3TATAATTATCAAA 3TACATTATCAAA CAACTCTTAGCCC	CGCTATCGAACCA 3TATAATTATCAAA CAACTCTTAGCCC GAAAACCCAAAO	CGCTATCGAACCA 3TATAATTATCAAA CAACTCTTAGCCC GAAAACCCAAAC GAAAACCCAAAC	CGCTATCGAACCA 3TATAATTATCAAA GAAATTATCAAA GAAAACCTAAAC GAAAACCCAAAC ACTTCTGGTAG CAATCGCTTAAI	GGCTATCGAACCA 3TATAATTATCAAA 3TATAATTATCAAA GAAAACCTTAGCCC GAAAACCCCAAAC GAAAACCCCAAAC CAATCGCTTAA1 GCCAATAGATGGT	GGCTATCGAACCA FTAATTATCAAA GAAATTATCAAA CAACTCTTAGCCC GAAAACCCAAAC GAAAACCCAAAC GAAAACCCAAAG ACTTCTGGTAG CAATCGCTTAAI GCCAATAGATGGT	CGCTATCGAACCA 3TATAATTATCAAA 3TATAATTATCAAA GAAAACCTTAGCCC GAAAACCCCAAAC GAAAACCCCAAAC GCCAAACGGTAGG GCCAATAGATGGG TACCAGTAGATGG
	TGGCCTACTACCGCGTGG	CTCATTGATTTTTCGCGGGATA	AACAACCGTCCTACAATTAAACAACA		GATGCAACTCTATCATGTA G	GATGATGCAACTCTATCATGTA G GATGATGCAACTCTATCATGTA G GAACATTTTTGGCAGAGAGAGCC	GATGATGCAACTCTATCATGTA G GATGATGCAACTCTATCATGTA G GAACATTTTTGGCAGAGAGAGGCC AACATTTTAGGCAGGCGGGGGGGGGG	GATGATGCAACTCTATCATGTA G GAACATTTTTGGCAGAGAGAGCC AACATTTTTGGCAGAGAGAGCC AACTTTTACATCCAGCCTGGCG TCTGCTTTACATCCAGCCTGGCG	GATGATGCAACTCTATCATGTA G GATGATGCAACTCTATCATGTA G GAACATTTTTGGCAGAGAGAGCC AACTTTTACATCCAGCAGAGAGCCC AACTTTTACATCCAGCCTGGCGCG AACTTTTACATCCAGCCTGGCGCG CTGGCTTTCCACGGCGGCGCG	GATGATGCAACTCTATCATGTA G GATGATGCAACTCTATCATGTA G GAACATTTTTGGCAGAGAGAGCC G AACTTTTACATCCAGCCTGGCGG TCTGCTTTACATCCAGCCTGGCGG TCTGCTTTTCAACGGAGCTCA CCTGGTGCTTTCGTCGGGG	GATGATGCAACTCTATCATGTA G GATGATGTAGCAGAGAGAGCC G AACTTTTAGGCAGAGAGAGCC G AACTTTTACATCCAGCCTGGGCG A ACTTTTACATCCAGCCTGGGCG C CTGGCTTTCCAGGGGGGCGG C CCTGGTGCTTTCGTCGGGT G CCTGGTGCTTTCGTCGGGT G GTTGTCCTCTGTGGGTCCAAA G GTTGTCCTCTGTGCTTTCCAAA G	GATGATGCAACTCTATCATGTA G GATGATGCAACTCTATCATGTA G GAACATTTTTGGCAGGAGAGAGCC G AACTTTTACATCCAGCCTGGCGG G TCTGCTTTTCAACGGAGCTCA C TCTGGTTTTCAACGGAGCTCA G TCTGGTTTTCAACGGAGCTCA G TCTGGTTTTCCAACGGAGCTCA G TCTGGTTTTCCAACGGAGCTCA G TCTGGTTTTCCAACGGAGCTCAAA G TCTGGTTTCTGTGGGT G TCTGCCTACAGGCAAGCAAATTT G
US3 TG		F3L CTCA	N3R AACAAC	HA GATO	(J7R)	(J7R) DNA poly- merase (E9L)	(J7R) DNA poly- GAAC (E9L) Gene AAC7 28 AAC7	(J7R) DNA poly- nerase (E9L) Gene AAC 28 BALF TCT 5 TCT	(J7R) DNA poly- merase (E9L) Gene AACT 28 BALF TCT 5 UL54 C((J7R)DNADNApoly-poly-poly-GeneAACI28Contract28BALFTCT5UL54U38GTT0	 (J7R) (J7R) DNA DNA poly- poly- GAAC nerase GAAC GAAC BALF GAC 28 ACT 28 GTT U65/66 TGT 	 (J7R) DNA DNA DNA Poly- GAAC rerase (E9L) GAAC 28 AACT 28 AACT 28 AACT 28 AACT 28 AACT 138 GTTC U U U U TCTG U U U TCTG U TCTG U TCTG U TCTG TCTG U TCTG TCTG
Macacine Alphaherpes-		Monkeypox	Monkeypox	pan-Orthopox-	virus (J	virus (J pan-Orthopox- p virus m	virus (J pan-Orthopox- D virus mu virus (J VZV (Varicella- C Zoster Virus, HHV-3)	virus (J pan-Orthopox- L virus m virus m virus (J (J (A Coster Virus, (A HHV-3) Barr Virus, B Barr Virus, B	virus (J pan-Orthopox- D virus m virus (J VZV (Varicella- G Zoster Virus, HHV-3) EBV (Epstein- B Barr Virus, HHV-4) CMV (Cytomegalo- t virus, HHV-5)	virus (J pan-Orthopox- virus m virus (A VZV (Varicella- (A) Zoster Virus, HHV-3) EBV (Epstein- Barr Virus, HHV-5) CMV (Cytomegalo- virus, HHV-5)	virus (J pan-Orthopox- virus m virus (A VZV (Varicella- (A Zoster Virus, HHV-3) EBV (Epstein- Barr Virus, HHV-4) CMV (Cytomegalo- virus, HHV-5) HHV-6a HHV-6a U	virus (J pan-Orthopox- virus (J virus (HHV-3) HHV-3) EBV (Epstein- Barr Virus, HHV-4) CMV (Cytomegalo- virus, HHV-5) HHV-6a HHV-6a HHV-6b U(

Figure S1. Head axial MRI T1WI, T2WI, cervical and lumbar sagittal T2WI of the case.

A, The Head axial MRI T1WI. The cortical laminar necrosis after ischemia and hypoxia was indicated by blue arrows. B, the Head axial MRI T2WI. The multiple low signal foci and hyperintensity in the brain were indicated by yellow arrow and red star, respectively. C and D, MRI T2WI of cervical and lumbar spine, respectively. The multiple abnormal signals in spine were indicated by green arrow.

References:

- Perelygina L, Patrusheva I, Manes N, et al. Quantitative real-time PCR for detection of monkey B virus (Cercopithecine herpesvirus 1) in clinical samples. J Virol Methods 2003; 109(2):245-51. (PMID: 12711069)
- Kulesh D, Loveless B, Norwood D, et al. Monkeypox virus detection in rodents using real-time 3'-minor groove binder Taq-Man[®] assays on the Roche LightCycler. Lab Invest 2004;84: 1200-1208. (PMID: 15208646)
- Kulesh DA, Baker RO, Loveless BM, et al. Smallpox and panorthopox virus detection by real-time 3'-minor groove binder TaqMan assays on the roche LightCycler and the Cepheid smart Cycler platforms. J Clin Microbiol 2004; 42(2):601-9. (PMID: 14766823)
- Espy MJ, Teo R, Ross TK, et al. Diagnosis of varicella-zoster virus infections in the clinical laboratory by LightCycler PCR. Journal of Clinical Microbiology 2000; 38(9):3187-3189. (PMID: 10970354)
- Hermouet S, Sutton CA, Rose TM, et al. Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma. Leukemia 2003; 17(1):185-95. (PMID: 12529677)