ORIGINAL ARTICLE

Detection of *NPM1* Mutations in Acute Myeloid Leukemia by using Drop-Off Droplet Digital PCR and its Clinical Application

Ye Jin ^{1, 3, #}, Zi-jun Xu ^{2, 3, #}, Di Yu ^{1, 3, #}, Pei-hui Xia ^{2, 3}, Dong-ming Yao ^{2, 3}, Qian Yuan ^{1, 3}, Ting Li ^{1, 3}, He-lin Xiang ^{1, 3}, Ji-chun Ma ^{2, 3}, Xiang-mei Wen ^{2, 3}, Jiang Lin ^{2, 3}, Jun Qian ^{1, 3}

[#] Ye Jin, Zi-jun Xu, and Di Yu contributed equally to this work
 ¹ Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
 ² Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, P.R. China
 ³ Zhenjiang Clinical Research Center of Hematology, Zhenjiang, Jiangsu, P.R. China

SUMMARY

Background: Nucleophosmin 1 (NPM1) mutations, which occur in 25 - 30% of acute myeloid leukemia (AML) and 50 - 60% of AML with normal karyotype, have been identified as an important marker for stratification of prognosis in AML. This study aimed to establish a new quantitative polymerase chain reaction (PCR) technique, the drop-off droplet digital PCR (ddPCR), for rapid and sensitive detection of NPM1 mutations in AML.

Methods: We established the drop-off ddPCR system and verified its performance. NPM1 mutations were screened in 130 AML patients by drop-off ddPCR and were validated by Sanger sequencing and next-generation sequencing (NGS). Then, the NPM1 mutation burden was dynamically monitored in five patients.

Results: The limit of blank (LOB) of drop-off ddPCR established for NPM1 mutation was 3.36 copies/µL, and the limit of detection (LOD) was 5.00 - 5.37 copies/µL in 50 ng DNA, and the sensitivity was about 0.05%, which had good linearity. Drop-off ddPCR identified 33/130 (25.4%) NPM1 mutated cases, consistent with Sanger sequencing. In 18 NPM1 positive cases selected randomly, NGS identified fourteen with type A mutation, two with type D mutation, and two with rare type mutations. The mutation burden of NPM1 mutation analyzed by NGS was consistent with the drop-off ddPCR. The sequential samples were detected for measurable residual disease (MRD) monitoring in 5 patients showed that the NPM1 mutation burden was consistent with clinical remission and recurrence. Compared with traditional ddPCR, drop-off ddPCR was also suitable for MRD monitoring.

Conclusions: In this study, we established a drop-off ddPCR method for detecting three common mutations in AML with good sensitivity and repeatability, which can be used to screen mutations in newly diagnosed AML patients and for MRD monitoring after remission to guide treatment.

1

(Clin. Lab. 2023;69:xx-xx. DOI: 10.7754/Clin.Lab.2023.230537)

Correspondence:

Professor Jun Qian
Department of Hematology
Affiliated People's Hospital of Jiangsu University
8 Dianli Rd.
212002 Zhenjiang
P.R. China

Fax: + 86 511 85234387 Email: qianjun0007@hotmail.com Professor Jiang Lin Laboratory Center Affiliated People's Hospital of Jiangsu University 8 Dianli Rd. 212002 Zhenjiang P.R. China

Fax: + 86 511 85234387 Email: 2651329493@qq.com

Manuscript accepted May 25, 2023

Clin. Lab. 11/2023

Supplementary Data

Table S1 Patient characteristics.

Patient characteristics	130 newly diagnosed AML	5 patients for MRD monitoring				
	patients	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age, years		56	59	59	65	52
Median	57					
Range	18 - 85					
Gender (male/female)	71/59	male	female	male	female	female
WBC count, \times 10 9 /L		49.6	70.8	27.4	4.0	22.7
Median	21					
Range	0.8 - 528					
FAB		M2	M5	M5	M4	M2
M0	1					
M1	8					
M2	65					
M4	35					
M5	18					
M6	3					
Karyotype		Intermediate	Intermediate	Unknown	Unknown	Intermediate
Favorable	14					
Intermediate	91					
Adverse	19					
Unknown	6					
NPM1 mutated	33	+	+	+	+	+
FLT3 mutated	25	-	-	-	-	-
CEBPA mutated	11	-	-	-	-	-
IDH1 mutated	9	-	-	-	+	-
IDH2 mutated	16	+	-	-	-	-
U2AF1	4	-	-	-	-	-
SRSF2	4	-	-	-	-	-
SF3B1	2	-	-	-	-	-
CKIT mutated	3	-	-	-	-	-
NRAS mutated	9	-	-	-	+	-
KARAS mutated	5	-	-	-	-	-
DNMT3A mutated	10	-	-	-	-	-
TP53 mutated	3	+	-	=	-	-

Prognostic group standard according to chromosomal abnormalities: Karyotype associated with favorable prognosis include t(8;21)(q22;q22), inv(16)(p13q22)/t(16;16)(p13;q22); Karyotype associated with intermediate prognosis include t(15;17)(q22;q12), normal cytogenesis, +8; Karyotype associated with adverse prognosis include complex karyotype consisting of ≥ 3 abnormalities, t(6;9)(p23;q34), abnormal 11q23 excluded t(9:11), del(5q), -5, del(7q), -7, t(9:22).

WBC - white blood cell, FAB - French-American-British criteria.

2 Clin. Lab. 11/2023