SHORT COMMUNICATION

Genome of a Carbapenem Resistant *Acinetobacter baumannii* Isolate of a new Sequence Type ST1724 from Saudi Arabia

Ahmed M. Tolah^{1, 2}, Muhammad Yasir^{1, 3}, Asad Karim⁴, Asad M. Karim⁵, Hani A. Shukri⁶, Esam I. Azhar^{1, 3}

¹ Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia

² Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University, Rabigh, Saudi Arabia

³ Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia

⁴ Jamil-Ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan

⁵ Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China ⁶ Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, Jeddah, Saudi Arabia

SUMMARY

Background: The World Health Organization has classified carbapenem-resistant *Acinetobacter baumannii* as a pathogen of critical priority that poses a serious threat to human health. We report a draft genome sequence of colistin and carbapenem-resistant *A. baumannii* strain AB134 of a new sequence type ST1724.

Methods: A. baumannii strain AB34 was isolated from a tracheal aspirate specimen from a patient diagnosed with atherosclerotic disease and treated at a hospital in Saudi Arabia. Antimicrobial susceptibility was determined via microdilution using a VITEK 2 system. Genome sequencing was performed using a HiSeq 2500 platform (Illumina Inc., USA).

Results: A. baumannii strain AB134 was classified as a new sequence type (ST1724) comprised of 3,763 predicted genes and a guanine-cytosine content of 38.8%. The isolate was phenotypically resistant to 16 clinically important antibiotics, and 33 antimicrobial resistance genes were detected, including the beta-lactamase genes of bla_{OXA-23} , bla_{OXA-66} , bla_{ADC-25} , and bla_{TEM-1D} . It carries the colistin resistance gene *lpsB*. In addition, 49 genes associated with virulence factors (biofilm formation, adherence, quorum sensing, iron uptake, and two-component system), and seven insertion sequences were detected in the AB134 genome.

Conclusions: This report presents the first draft genome of ST1724 of carbapenem-resistant and extensively drug-resistant *A. baumannii*. The findings facilitate further understanding of the genomics of this pathogen, which is a leading cause of healthcare-associated infections worldwide.

(Clin. Lab. 2025;71:1-4. DOI: 10.7754/Clin.Lab.2024.240926)

Correspondence:

Muhammad Yasir King Fahd Medical Research Centre King Abdulaziz University Jeddah, 21589 Saudi Arabia Phone: +966 563202241 Email: yasirkhattak.mrl@gmail.com

Short Communication accepted November 17, 2024

Supplementary Data

Table C	TTlanaa	and a data to	J : 4h a aramana	of A sin stall a star	1	AD124
I able 5	i. virmence	genes delected	i in the genome	e of Acinelobacier	<i>Daumannu</i> strain	AB1.34.
		genes access				

Virulence Factors	Genes				
Adherence					
Outer membrane protein	ompA				
Biofilm formation					
AdeFGH efflux pump/transport autoinducer	adeF				
AdeFGH efflux pump/transport autoinducer	adeG				
AdeFGH efflux pump/transport autoinducer	adeH				
Biofilm-associated protein	bap				
Csu pili	csuA/B				
Csu pili	csuA				
Csu pili	csuB				
Csu pili	csuC				
Csu pili	csuD				
Csu pili	csuE				
PNAG (Polysaccharide poly-N-acetylglucosamine)	pgaA				
PNAG (Polysaccharide poly-N-acetylglucosamine)	pgaB				
PNAG (Polysaccharide poly-N-acetylglucosamine)	pgaC				
PNAG (Polysaccharide poly-N-acetylglucosamine)	pgaD				
Enzyme					
Phospholipase C	plc				
Phospholipase D	plcD				
Immune evasion					
LPS	lpsB				
LPS	<i>lpxA</i>				
LPS	lpxB				
LPS	lpxC				
LPS	lpxD				
LPS	lpxL				
LPS	lpxM				
Iron uptake					
Acinetobactin	barA				
Acinetobactin	barB				
Acinetobactin	basA				
Acinetobactin	bas B				
Acinetobactin	basC				
Acinetobactin	basD				
Acinetobactin	basF				
Acinetobactin	basG				
Acinetobactin	basH				
Acinetobactin	basI				
Acinetobactin	basJ				
Acinetobactin	bauA				
Acinetobactin	bauB				

Table S1.	Virulence genes	detected in the g	genome of Acin	ietobacter bauma	<i>innii</i> strain AB	8134 (continued).
-----------	-----------------	-------------------	----------------	------------------	------------------------	-------------------

Virulence Factors	Genes			
Iron uptake (continued)				
Acinetobactin	bauC			
Acinetobactin	bauD			
Acinetobactin	bauE			
Acinetobactin	bauF			
Acinetobactin	entE			
Heme utilization	hemO			
Regulation				
Quorum sensing	abaI			
Quorum sensing	abaR			
Two-component system	bfmR			
Two-component system	bfmS			
Serum resistance				
PbpG	pbpG			
Stress adaptation				
Catalase	katA			

Figure S1. The coding region BLAST map of *Acinetobacter baumannii* genomes. *A. baumannii* strain AB134 was used as a reference genome against the other nine *A. baumannii* strains.

Ahmed M. Tolah et al.

Figure S2: The DNA BLAST map of *Acinetobacter baumannii* genomes. *A. baumannii* strain AB134 was used as a reference genome against the other nine *A. baumannii* strains.