Clin. Lab. 2025;71:1-3 ©Copyright

ORIGINAL ARTICLE

Prenatal Genetic Diagnosis of Williams-Beuren Syndrome with Atypical and Complex Phenotypes

Weiqiang Liu^{1, 3, *}, Haibing Zhong^{1, 5, *}, Dingya Cao^{2, *}, Jinshuang Song⁴, Tong Zhang^{1, 3}, Shuxian Zeng^{1, 3}, Xiaoyi Cong^{1, 3}, Min Chen²

* These authors contributed equally to this work

¹ Central Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou

University Medical College), Shenzhen, China

² Department of Fetal Medicine and Prenatal Diagnosis, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated

Hospital of Guangzhou Medical University, Guangzhou, China ³ Shenzhen Longgang District Key Laboratory for Birth Defects Prevention, Shenzhen, China

⁴ Department of Medical Ultrasonics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child

Institute of Shantou University Medical College), Shenzhen, China

⁵ Department of Laboratory Medicine, Longgang Central Hospital of Shenzhen, Shenzhen, China

SUMMARY

Background: Williams-Beuren syndrome (WBS) is a severe congenital disorder that presents challenges in prenatal diagnosis due to the atypical or incomplete phenotypes exhibited by affected fetuses. This study investigated the relationship between genotype and complex phenotype in WBS fetuses using ultrasound, SNP array, and whole exome sequencing.

Methods: Chromosomal microarray analysis (CMA) and whole genome sequencing (WES) were conducted on pregnant women undergoing prenatal diagnosis. We analyzed genome-wide copy number variants (CNVs), regions of homozygosity (ROH), single nucleotide variants (SNVs), small insertions and deletions, and splice sites.

Results: A deletion at 7q11.23 was identified in 7 out of 6,718 prenatal diagnostic samples (1 in 960). Ultrasound findings varied: two fetuses exhibited cardiovascular anomalies; one presented with persistent left superior vena cava and intrauterine growth retardation (IUGR), while two others displayed polycystic kidney dysplasia, one accompanied by mild tricuspid regurgitation, and the remaining two fetuses showed no apparent ultrasound abnormalities. Genetic analysis revealed CNVs ranging in size from 1.43 to 1.66 megabase pairs (Mb), affecting 34 to 41 genes. On average, one additional CNV larger than 100 kilobase pairs (Kb) of unknown significance and 0.43 ROH larger than 5 Mb were identified in these cases. Although pathogenic or likely pathogenic SNV or splice sites related to renal development and cardiovascular development were found, none correlated with the fetal phenotype observed.

Conclusions: The phenotypes of WBS fetuses are often atypical and complex. Future research should focus on integrating advanced genetic technologies and improved imaging modalities to enhance our understanding of the intricate genotype-phenotype relationships associated with WBS. (Clin. Lab. 2025;71:1-3. DOI: 10.7754/Clin.Lab.2024.241020)

Correspondence: Weiqiang Liu Central Laboratory Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College) 6 Ailong Road, Shenzhen City China + 86 075528933003 Phone: Email: liuwq06@126.com

Min Chen

Department of Fetal Medicine and Prenatal Diagnosis Key Laboratory for Major Obstetric Diseases of **Guangdong Province** Third Affiliated Hospital of Guangzhou Medical University 63 Duobao Road, Guangzhou City China Phone: + 86 2081292292 Email: edchen99@gmail.com

Manuscript accepted October 24, 2024

Supplementary Data

Case	Chromosome position	Gene	Nucleotide changes	Amino acid changes	Zygosity	Interpretation	Related disease/phenotype
Case 1	3:9979763	CRELD1	c.433G>A (NM_015513)	p.A145T	Het.	VUS	Atrioventricular septal defect, partial, with heterotaxy syndrome, (MIM:606217, AD)
	8:65517310	CYP7B1	c.1162C>T (NM_001324112)	p.R388 *	Het.	Р	Bile acid synthesis defect, congenital, 3 (MIM:613812AR) Spastic paraplegia 5A (MIM:270800, AR)
	9:6553457	GLDC	c.2368C>T (NM_000170)	p.R790W	Het.	LP	Glycine encephalopathy 1 (MIM:605899, AR)
	17:29253883	ADAP2	c.282G>T	p.K94N	Hom.	VUS	/
Case 2	4:170482659	NEK1	c.1238T>C (NM_001199400)	p.L413P	Het.	VUS	Amyotrophic lateral sclerosis, susceptibility to, 24, (MIM:617892, AD)
	6:51923353	PKHD1	c.1280C>T (NM_138694)	p.S427F	Het.	VUS	Polycystic kidney disease 4, with or without hepatic disease (MIM:263200, AR)
	10:115373936	NRAP	c.3300+6T>C (NM_001322945)	/	Het.	VUS	Biallelic loss-of-function mutations in NRAP could constitute a low-penetrance genetic risk factor for
	10:115381896	NRAP	c.2393T>C (NM_001322945)	p.1798T	Het.	VUS	cardiomyopathy (OIMI:602873, AR)
	11:73872485	C2CD3	c.441dupT (NM_001286577)	p.T148Yfs*8	Het.	LP	Orofaciodigital syndrome XIV (mMIM:615948, AR)
	13:20763612	GJB2	c.109G>A (NM_004004)	p.V37I	Het.	Р	Deafness, autosomal dominant 3A(MIM:601544,AD) Deafness, autosomal dominant 1A (MIM:220290,AR)
	18:32457718	DTNA	c.928G>T (NM_001198943)	p.A310S	Het.	VUS	Left ventricular noncompaction 1, with or without congenital heart defects (MIM:604169, AD)
Case 3	1:74808579	FPGT- TNNI3K	c.1078G>C (NM_001112808)	p.G360R	Het.	LP	Cardiac conduction disease with or without dilated cardiomyopathy (MIM:616117, AD)
	2:220283470	DES	c.286G>T (NM_001927)	p.A96S	Het.	VUS	Cardiomyopathy, dilated, 11 (MIM:604765, AD)
	5:39341378	С9	c.346C>T (NM_001737)	p.R116 *	Het.	Р	C9 deficiency (MIM:613825) Macular degeneration, age- related, 15, susceptibility to (MIM:615591, AD)

Table S1. WES results of fetal samples from 4 cases of WBS.

Table S1. WES results of fetal samples from 4	cases of WBS (continued).
---	---------------------------

Case	Chromosome position	Gene	Nucleotide changes	Amino acid changes	Zygosity	Interpretation	Related disease/phenotype
Case 4	5:228417	SDHA	c.595A>G (NM_001294332)	p.I199V	Het.	VUS	Cardiomyopathy, dilated, 1GG (MIM:613642, AR) Pheochromocytoma/paragan glioma syndrome 5 (MIM:614165, AD)
	12:48258833	VDR	c.274G>A (NM_000376)	p.E92K	Het.	LP	Rickets, vitamin D-resistant, type IIA (MIM:277440, AR)
	11:71148969	DHCR7	c.852C>A (NM_001163817)	p.F284L	Het.	LP	Smith-Lemli-Opitz syndrome (MIM:270400, AR)
	12:121176944	ACADS	c.1031A>G (NM_000017)	p.E344G	Het.	Р	Acyl-CoA dehydrogenase, short-chain, deficiency of (MIM:201470, AR)