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SUMMARY

Background: Tuberculosis remains a substantial health threat globally, despite decades having elapsed since the
identification of its causative agent, Mycobacterium tuberculosis. Approximately 35% of the global population is
sub-clinically infected, leading as one of the primary causes of human mortality. The increased prevalence of drug-
resistant strains of Mtb necessitates identification of important drug targets. Therefore, the aim of the study was to
comparatively analyze the protein-protein interactions between the host and the pathogen (Mycobacterium
tuberculosis) to uncover the conserved molecular mechanisms of infection, providing insight into strain-specific
variations.

Methods: One of the major problems is the diverse spectrum of diseases caused by different Mtb. To date, most
research has their attention on a specific pathogenic strain. Therefore, to screen common and effective drug targets
of different strains, we compared the protein-protein interactions of four virulent strains (H37Rv, CDC1551,
CAS/NITR204, and Erdman) and one a virulent strain (H37Ra) of Mtb with its human host. Here, the interolog
method was adopted to identify the biomolecular-interactions between Mtb and its human host.

Results: As a result, an interaction network has been developed, and the target has been screened through multiple
parameters, such as the highest interacting partners, virulent factors, subcellular localization, and predicted protein
interactions.

Conclusions: This study substantially resulted in the identification of potential drug targets, ATP synthase subunit
alpha and gamma, and chaperone proteins DNAK and HTPG.
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Supplementary Data

An overview of the potential drug targets identified
After studying the host-pathogen protein-protein interac-
tions (HP-PPIs), the ATP synthase (ATPA & ATPG) and
Chaperon proteins (DNAK & HTPG) were found to be
present in all the studied strains, which suggests that
these proteins can be a potential drug target and can also
fight against the problem of the diverse pattern of infec-
tion through the bacterium Mycobacterium tuberculosis
(Mtb). Various steps of filtration of HP-PPIs, like subcel-
lular localization, virulence factor, function and role in
pathways, etc., were studied to sort out potential drug tar-
get of Mtb.

ATP synthase as a potential drug target

ATP synthase is the membrane-bound ion channel that
usually controls the movement of ATP and ions through
membranes [1]. FOF1 ATP synthase performs hydrolase
activity and was considered a potential drug target in this
study. The mycobacterial ATP synthase complex has
been studied and it has turned out to be a successful target
for the anti-tubercular drug Bedaquline. It has been pre-
viously reported that the F-ATPase subunit alpha of Mtb
has a unique C-terminal extension of 36 amino acid resi-
dues [2]. In the alignment study of amino acid sequences
of ATPA by clustalW, a unique amino acid region, i.e.
514-TGGGSVVPDEHVEALDEDKLAKEAVKVKKP
APKKKK-549 (according to Mth numbering), was re-
vealed, which is absent in any other known eukaryotic or
prokaryotic alpha subunits of ATPase (Figure S1). The
secondary structure analysis predicted this region (514-
549) of Mtb ATPA protein as a beta turn (Figure S2).
Likewise, studies on the FLIFOATPase subunit (y) gam-
ma considered it a drug target as it showed lower homol-
ogy with FIFOATPase y subunit of Escherichia coli and
human mitochondrial, i.e. a sequence similarity of 37%
and 25%, respectively. The region of 14 amino acid resi-
dues 165-TDNGEDQRSDSGEG-178 (according to Mth
UniProt ID P9WPUS8 numbering) was found to be
unique, as it was absent in other prokaryotic or eukaryot-
ic y subunits (Figure S3) [3].

Besides this, there are several structural differences when
compared with the human orthologue, and because of
these differences in mycobacterium and human mito-
chondrial ATP synthase, the subunit alpha and gamma
can be considered as a potential drug target. In the future,
these drug targets can be used for docking analyses; phy-
tochemicals and drug repurposing can help us to develop
new drugs against the proposed target [4].

Protein chaperones as a potential drug target

Protein chaperones are important for all domains of life
for preventing and resolving protein misfolding occur-
ring during the translation process and during the proteo-
toxic stress. DNAK belongs to the heat shock family 70
protein and is widely distributed in both prokaryotic and
eukaryotic cells. The function of DNAK is well studied

for E. coli, yet its functions for other bacteria have not
been studied extensively. Mycobacterial DNAK regu-
lates the heat shock response by interacting with HspR C
terminal tail and relieves repression of chaperone genes.
The heat shock response helps in the survival of the cells
that are exposed to a sudden increase in ambient tempera-
ture [5-7]. The heat-shock response is a ubiquitous adap-
tive pathway involved in the survival of cells exposed to
a sudden increase in ambient temperature. It is character-
ized by global transcriptional changes including elevated
expression of a set of highly-conserved heat-shock pro-
teins. DNAK is regulated by cofactors, nucleotide ex-
change factor GrpE, and J proteins. In mycobacterium,
two types of J proteins are present, DnaJl and Dnal2,
which activate the ATPase activity of DNAK differently.
Mtb DNAK and their eukaryotic homologs Hsp104/
Hsp70 are ATP-powered chaperones that restore toxic
protein aggregates to a native folded state. These chaper-
ones play an important role in establishing the infection
by Mtb [8].

Another studied prokaryotic 90-kDa molecular chaper-
one, HtpG protein or high temperature protein G, belongs
to the class of heat shock protein and is about 40% simi-
lar to its eukaryotic counterparts [9]. HtpG or Hsp90
functions are similar to DNAK. It is not very well charac-
terized unlike its eukaryotic counterparts [10]. Hsp90 is
also involved in drawing out immune responses [11].
Studies show that it is responsible for T-cell immunity
[12]. Chaperone peptide’s processing and MHC-1 pre-
sentation is shown to be increased with the help of hsp90
and hsp70 (DNAK) [13]. Inhibition of the function of
HSP90 provides a new approach to fight against drug re-
sistance and overcome the virulence of a pathogen. It was
previously reported that HtpG affects the dormant phase
of Mtb [14].
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Figure S1. Clustal Omega sequence alignment of ATPase subunit alpha and gamma sequences of different strains of Mycobacteri-

um along with sequences of E. coli and human.

The region in black box (514 - 549 of ATPA and 165 - 178 of ATPG) is uniquely present in Mtb strains. The alignment is obtained through Unipro

UGENE tool.
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Figure S2. Secondary structure analysis through PDBsum showing the unique region of ATPase subunit alpha in Mtb; a structur-

al comparison with human ATPase subunit alpha.
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Figure S3. Secondary structure analysis through PDBsum showing the unique region of ATPase subunit gamma in Mtb; a struc-

tural comparison with human ATPase subunit alpha.
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